
Creating React for live streams
Low-latency multimedia insights

Wojciech Barczyński 



React for live streams?



How it works?



Let’s get started!



Weird 50% packet loss… on localhost?



Observed issues

● Weird packet loss on localhost while streaming with RTP
● A few first packets were correct
● Many next packets were lost
● Only happened on Linux - worked fine on MacOS



UDP buffer overflow

Problems:

● By default UDP buffers on Linux are small (usually ~200kB)
● UDP packets are discarded and lost if overflow occurs

Solutions:

● Increasing UDP buffer size
● Speeding-up reading from UDP sockets



Usually packets are coming in batches



Decoders



Test performance with “real” video



Hardware decoding/encoding

● Decoding/encoding is often the most computationally 
expensive part of the pipeline

● With FFmpeg / GStreamer changing decoders/encoders is 
quite easy

● Low-hanging fruit in optimization process



Reducing memory copying with 
hardware decoding/encoding



Queue - one element to rule them all!

Synchronizing streams, lazy decoding, network instability handling



Queue

Buffering:

● Reducing impact of network unreliability
● Helps stream synchronization

Back-pressure:

● Reducing RAM usage with lazy decoding



Rendering / Mixing



Preallocating memory

● Memory allocations are slow
● It’s faster to copy memory to preallocated buffer, than 

allocating memory “on the fly”

What we did?

● GPU textures are preallocated - we don’t need to do large 
allocations on each render

● LiveCompositor sometimes use stack preallocated array 
buffers instead of heap OTF allocated data structures



Profiling - check your hardware

With GPU rendering:

● Decoding & encoding - >70% CPU usage
● Rendering - <1% CPU usage
● Rendering cost is negligible

With emulating rendering on CPU:

● Rendering - ~70% CPU usage 
(depends on render complexity)



Profiling - check your hardware

We optimized renders to be able to run on servers 
without GPU by:

● Rendering text/image textures only once
● Flattening all “div”-s to render them at once



Encoders - low effort optimizations



Encoders - low effort optimizations

Hardware encoding has worst quality, but is much faster.

Changing encoder setting can greatly impact your performance:

● Encoder preset and bitrate are most important
● ip-factor (key-frames / p-frames), tune etc. also have some 

impact on performance and latency



Sending outputs



Sending outputs - know your players!



Sending outputs - know your players!

Not all players work in the same way!

Some players can handle metadata differently.

Examples:

● Different SDP handling
● Disregarding audio PTS values





Ask important questions

Before optimizing your pipeline, you should consider:

● Does it have to be real-time?
● Costs of the other parts of infrastructure



Does it have to be real-time?

If you can process it offline, maybe it’s not worth to do it 
real-time.

LiveCompositor also supports offline processing

With offline processing you can: 

- reduce complexity
- send streams reliably, without losing frames (e.g. TCP vs 

UDP)
- process all streams without dropping frames
- perform operations with frame-perfect precision



Cost of the other parts of infrastructure



Live demo



Announcements



Stable API







Questions?



Thanks for listening


