

Răzvan Crainea

- 30th of April 2024 -

Outline

- Introduction
- IP Multimedia Subsystem
- Architecture
- eP-CSCF
- Conclusions
- "IMS" Working Group

About me

- Bucharest, Romania
- Working on the OpenSIPS since 2010
- OpenSIPS Core Developer
- SIPhub CTO
- Father of a 3yo

OpenSIPS

- Open-Source SIP Proxy/Server
- Flexible
 - 0 100+ modules
 - Programmable
- Highly Scalable
 - 20k calls per second
 - Millions simultaneous calls
- Handles SIP signalling
 - No media

OpenSIPS Use Cases

- Session Border Controller
- Front-End to your VoIP Core
- Trunking
- Residential
- Load Balancer
- Call Center Queuing
- Virtual PBX

OpenSIPS - The Open SIP Server

- high-performance, open source SIP server
- full RFC 3261 compliance
- used by carriers, telcos and ITSPs
- multi-functional
- multi-purpose
- programmable
- written in C
- modular

Powering ITSPs and Telcos

OpenSIPS - Transport & App Protocols

OpenSIPS - SIP Extensions

RFC 8599 SIP PN RFC 8760 Digest Auth

SIP Presence SIP B2BUA RFC 8866 SDP

OpenSIPS Interfacing: SQL

Virtual

OpenSIPS Interfacing: NoSQL

OpenSIPS Interfacing: Others

MI (JSON-RPC)

Programmable

- bespoke scripting language
- event-driven control of SIP
 - requests vs. replies
 - manipulate headers/body
- variables w/ scopes
 - process-private
 - SIP tx
 - SIP dialog
 - global

```
$acc_leg(onnet) = "0";
if (is method("INVITE")) {
    do accounting("db", "cdr|failed");
   # any non-ACK dialog should end quickly
    $DLG timeout = 10;
   # create the dialog
    if (!create dialog("B")) {
       xlog("[$ci] WARNING: failed to create d
        route(CHECK SYNTAX EXTRA);
        send reply(500, "Internal Server Error
        exit:
    set dlg sharing tag("HA TAG");
```

Programmable

- 179 modules!
 - o https://opensips.org/Documentation/Modules-3-5
- SIP registrar
- SIP Presence
- LCR + failover
- Load Balancing + failover
- topology hiding
- RTP relayRTPProxy / RTPEngine / MediaProxy
- NAT traversal

```
$acc_leg(onnet) = "0";
if (is method("INVITE")) {
    do accounting("db", "cdr|failed");
   # any non-ACK dialog should end quickly
    $DLG timeout = 10;
   # create the dialog
   if (!create dialog("B")) {
       xlog("[$ci] WARNING: failed to create d
        route(CHECK SYNTAX EXTRA);
       send reply(500, "Internal Server Error
        exit:
    set dlg sharing tag("HA TAG");
```

Build Class 4 Services

- Session Border Controller
- Wholesale Trunking
- SIP front-end (Registrations, Presence, etc.)
- SIP Redirect Services
 - LNP
 - LCR
 - CNAM
 - STIR/SHAKEN signing
 - STIR/SHAKEN verification (<u>stir shaken</u> module)

Build Class 5 Services

- PBX
- Conferences*
- Hunt Groups
- Call Pickup
- Call Parking
- IVRs*
- Voicemail*

(*) in tandem with a media server e.g. FreeSWITCH / Asterisk

IMS - simple terms

• IP Multimedia Subsystem DB **Operator** 3G/4G/5G UE tower IMS (voice, video)

IP Multimedia Subsystem

- architectural framework for delivering IP multimedia services
- describes interactions between all components
- modular design, open interfaces

VoLTE

- Voice over LTE (Long Term Evolution/4G)
 - o One Voice Initiative, 2009, adopted by GSMA in 2010
 - o GSMA PRD IR.92, IMS Profile for Voice and SMS
 - o First release in 2012, 226 operators in 2020
- Improvements (over 3G/2G)
 - Fast call set-up
 - High Definition voice quality
 - Reduced background noise
 - Video calling

VolTE Network Architecture

VoNR

- Voice over New Radio or Voice over 5G System
 - o GSMA PRD NG.114, IMS Profile for Voice, Video and Messaging over 5GS
 - Specs released in August 2020
- Improvements (over VoLTE)
 - Better codecs support (AMR-WB)
 - Faster call set-up
 - Low latency capabilities
 - Allows fallback to VolTE
 - Drops 2G and 3G

VoNR vs VoLTE

- Different core architecture
- IMS architecture is the same
- Different interfaces
 - o Diameter vs HTTP 2.0
- VoNR provides fallback
 - Switch call to VoLTE

VoNR to VolTE EPS fallback

Architecture

Control Layer

- the core of IMS
- NF == IETF protocols
 - SIP
 - Diameter
 - MSRP
 - SDP / RTP / RTCP
 - XCAP
 - NG: **HTTP/2**

Proxy CSCF

- a SIP proxy
- may offer SBC features
- first point of contact
- discovery by IMS terminals
 - o DHCP
 - pre-configuration
- Enforces security with UE
 - replay/spoofing attacks
 - o privacy
- generates charging records

Interrogating CSCF

- a SIP proxy
- edge of administrative domain
- published in the DNS server
- entrypoint for all SIP transactions

Serving CSCF

- central node
- registers users
- provides services
- routes SIP requests
- billing information
- SST
- interrogates HSS
 - authentication & authorization
 - user profiles

HSS - Home Subscriber Server

- master user DB
- supports NF which handle calls/sessions
- stores AA information
- provides info about users' locations
- implements Diameter

Service Layer

- provides MM services
- an Application Server
 - hosts services
 - executes services
 - uses SIP protocol
 - redirect server
 - proxy server
 - origination UA
 - termination UA
 - B2B UA

P-CSCF implementation

Entry point of UE in IMS

- Provides a secure channel between UE and IMS
- RFC 3329 Security Mechanism Agreement (SIP)
- Signaling
 - IPSec tunnels + AKAv1 authentication
 - TLS + AKAv2 authentication
- Media
 - SDES & DTLS-SRTP for RTP
 - TLS over MSRP
 - TLS & certificates for UDPTL/BFCP

VolTE in OpenSIPS

- Proxy/Interrogating/Serving Call Session Control Function
 - SIP Signaling (Gm, Mw interface)
 - Diameter (Cx, Dx, Rx interfaces)
 - IMS AKA mutual authentication between UE and IMS core (IPSec)

VoNR in OpenSIPS

- Proxy/Interrogating/Serving Call Session Control Function
 - SIP Signaling (IMS control plane)
 - HTTP 2.0 implementation (for Service Based Interface)

eP-CSCF

eP-CSCF

P-CSCF enhanced for WebRTC

- Introduced in 3GPP TR 23.701 (2013-2014)
- Came along with the popularity of WebRTC
- Goal is to provide unified services
- How you can access IMS features from a browser
- Does not enforce a signaling protocol
 - SIP over WebSockets are preferred

eP-CSCF architecture

WIC

WebRTC IMS Client

- WebRTC Javascript based application
- Downloaded from the WWSF
- Provides logic and APIs to access the IMS

WWSF

WebRTC Web Server Function

- Web Server that hosts the WIC application
- Also referred as WebRTC Application Controller (WAC)
- Can handle authentication & authorization as well

eP-CSCF

P-CSCF enhanced for WebRTC

- Acts as a gateway from WebRTC to SIP
- Ensures a trusted channel between UE and IMS core
- "Normalizes" traffic towards IMS core

eIMS-AGW

IMS Access GateWay enhanced for WebRTC

- Handles media gatewaying
- Encryption/Decryption, Transcoding
- ICE, STUN, TURN

eP-CSCF in OpenSIPS

- Can already act as a (standard) P-CSCF
- Provides SIP over Secure WebSocket transport
- Provides AKA authentication
- Use rtpengine for media eIMS-AGW functionalities

Conclusions

Conclusions

- OpenSIPS is a versatile SIP Proxy/Server
- IMS enhances operator's networks with voice/video
- Use OpenSIPS as an IMS core
- eP-CSCF provides Web access to IMS

OpenSIPS Working Groups

OpenSIPS Working Groups

- OpenSIPS <u>3.5</u> release is <u>IMS focused</u>
- IMS is a complex topic
- exchange information/ideas between several parties
 - o what are the industry needs?
 - which 3GPP specs are relevant?
 - what IETF protocols are required? In what scenarios?
- ... before considering any development!

The "IMS" OWG

- gathers people with interest in IMS
- The more inputs, the better solution
- Goal: to <u>draft</u>, <u>design</u> and <u>implement</u> IMS support in OpenSIPS
- ML: http://lists.opensips.org/cgi-bin/mailman/listinfo/wg-ims
 - public discussions
 - o free to join
- GHub Wiki: https://github.com/OpenSIPS/opensips/wiki/IMS-OpenSIPS-Working-Group

https://summit.opensips.org

Take-Away Message

Use OpenSIPS 3.5 to build your own IMS VoLTE/VoNR infrastructure!

- Răzvan Crainea
 - @razvancrainea
 - razvan@opensips.org

OpenSIPS Implementation

Diameter Interface

- Provide a generic method of handling Diameter commands
 - Commands are "hand-crafted" in the script
 - Provides the ability to tune every single parameter
 - Fine grained inspection of the response
 - Provide samples with default behavior
- Commands can be handled both synchronous and asynchronous
- Act as a Diameter server
 - Handle commands from HSS (Push Profile, Registration Termination)
 - Access to the request/reply in script
 - Trigger additional actions

Diameter Interface Implementation

- Built on top of freeDiameter Open Source project
- Multi-process (OpenSIPS) vs Single-process (Diameter)

HTTP 2.0 Interface

- Handling similar to Diameter
 - Commands are "hand-crafted" in the script
- Client side
 - rest_client module in OpenSIPS
 - libcurl already supports HTTP 2.0
- Server side
 - o nghttp2 implementation of HTTP 2.0 server
 - Dedicated process for handling requests
 - Dispatch requests to any available workers

IMS AKA

- Authentication and Key Agreement
 - Mutual authentication
 - One time passwords
 - Authentication Vectors

IMS AKA AVs

- RAND Random number
- AUT Authentication token
- XRES Signed Result
- CK Cipher Key
- IK Integrity Key

Auth Challenge

Auth Response

Network Auth (IPSec)

IMS AKA implementation

- Auth_aka module
 - Builds the necessary headers for challenges
 - Parses the response and authenticates the UA
 - Does not fetch the Authentication Vectors
 - Provides an interface to provide Authentication Vectors
- Authentication Vectors managers
 - "Transport" layer for fetching AVs
 - Modules
 - ✓ aka_av_diameter
 - √ aka_av_http2
 - √ aka_av_route

IPSec

- AKAv1 is susceptible to man-in-the-middle attacks
- Internet Protocol Security
 - Authentication and secure encrypted communication
- IMS AKA AVs
 - Integrity key (IK) and Cipher key (CK)
 - Used by P-CSCF to create a tunnel with UE

- Implementation
 - Dynamically created tunnels
 - Can not use classic VPN servers (StrongSwan)
 - XFRM interface or libmnl library

IMS AKAv2

- Immune to man-in-the-middle attacks
- AKAv1, but masks IK and CK
 - Use derived values IK' and CK'
- ETSI TS 133 203 v12 (2015)
 - No longer need IPSec
 - Communication over TLS/WebRTC