HELLO WHISPY!

HELLO WHISPY!

NSFW: live presentat ion

HELLO WHISPY!

NSFW: live presentation

FIRST THINGS FIRST

TO ALL ATTENDEES! THAT'S YOU!

Thank you for showing up & making JanusCon awesome!

ANTONIO
BEVILACQUA

(yes, | play catpipes)

o \ (¥
E.d-\~ .
\

ML ENGINEER
@MEETECHO

A SAD, SAD STORY

A SAD, SAD STORY

| LEFT MY CLICKER

IN IRELAND

A SAD, SAD STORY

BEAUTIFUL

RECOVERY PLAN

RECOVERY PLAN

1. Getting hired by tech company

RECOVERY PLAN

1. Getting hired by tech company

2. Build STT system for real-time audio

RECOVERY PLAN

1. Getting hired by tech company
2. Build STT system for real-time audio

3. Design voice-activated thingy to simulate mouse/keyboard

RECOVERY PLAN

1. Getting hired by tech company
2. Build STT system for real-time audio
3. Design voice-activated thingy to simulate mouse/keyboard

4. Wait for JanusCon

RECOVERY PLAN

1. Getting hired by tech company
2. Build STT system for real-time audio
3. Design voice-activated thingy to simulate mouse/keyboard
4. Wait for JanusCon

5. Present it without using (much) stupid fingers for transitions

) stupid fingers for transitions

TODAY IS THE DAY!

DID YOU
SAY PIZZA?

LET'S START!

STT

Use spoken-language auditory data for cool things like:
Transcription
Translation
Voice Activity Detection

Language Identification

WHISPER

Family of multilingual, multitask ASR models
Powered by OpenAl @
Trained on 600k+ hours of audio
Domain SOTA (for zero-shot learning)

Several flavours & toppings available

TERRIFIC, BUT...

Whisper is limited to offline use only

Whisper models occasionally hallucinate (sounds fun but it's not)

ABOUT
WHISPY

WHAT IS WHISPY?

A self-contained, production-ready transcription service
Based on extensible pipeline system for real-time Al applications

The latest inclusion to our Meetecho products!

BASIC IDEA

Read in streaming audio from source and buffer it
Transcribe audio chunks
Detect hallucinations & other unwanted artifacts

Merge transcriptions after filtering out overlapping parts

MAIN INGREDIENTS

1. Input pipeline (janus-powered f fmpeg stream)
2. Shifting data register
3. Pre-trained STT Whisper model

4. Hallucination filter / suggestion generator

MAIN INGREDIENTS

/warmup

/start
/stop l

web server

local ffmpeg pipe RTP manager
Janus stream

buffering
normalisation

transcriber

data register

red- RN EN

polling

... roses are

INPUT PIPELINE

local ffmpeg pipe RTP manager

o buffering .
normalisation

Using ffmpeg-python, read in a forwarded Janus remote audio stream and
produce a local RTP stream that is consumed by a naive client.

Janus stream

Demand data manipulation (encoding/decoding) to f fmpeg, can easily be
extended to multiple input/output scenarios.

DATA REGISTER

c_: audio chunks TL;DR FlFO Q

4, ¢ temporal duration of each chunk
f : audio sampling rate

Keeps track of chunk numbers

buffer max length = o =

Stores temporal coordinates
from [secs]
to [secs]

||
e L]

TRANSCRIBER

Inference happens on consecutive, overlapping audio chunks

Data already come in a Whisper-friendly format (thanks to input pipe)

Trick #1: re-transcription (helps with delays & context)

Trick #2: filter out silent regions (helps with speed & resources)

SILENCE FILTER: VAD

Whisper comes with an embedded Voice Activity Detection filter (Silero)

Useful to detect voice segments within audio data

In our chunking system, coordinates need to be stored & shifted as new
audio segments are available from the source

SILENCE FILTER: VAD

silence voice

silence voice

TRANSCRIBER CONTD.

last_chunk = ister.get_last_chunk()
NOt rea”y far from real COde! vziceftligestanzgg,lsvzcgfdur:iioﬁ Enrun_vad(las‘c_chunk)

if voice_duration 0.0:

model is faSter-WhiSper register.flush?;
. return ‘silence’
(quantised = small & fast)

coordinates.update(voice_timestamps)

speech = get_speech(register.data, coordinates)
transcript = model.transcribe(speech)
hallucinations = has_hallucination(transcript)

Next: hallucinations and if len(hallucinations) > 0
. transcript = fix_hallucination(transcript)
suggestions!

transcript = generate_suggestion(transcript, last_transcript)

return transcript

HALLUCINATION FILTER

Repeated tokens Repeated sentences
Trivial to solve (kinda) as a token Trick of the trade: find motifs in
is often repeated several times in sentences using MatrixProfile

the same block. . . .
(like shooting a fly with a
That is a great place to eat pizza, pizza, pizza, pizza, pizza, pizza, pizza,

pizza, pizza, pizza even without pineapple on it. ba yAdolo) ka: Effe Ctive AN D coo I)

And neither of these stories is very inspiring or great, but one of them is
distinct. We'll be right back. We'll be right back. We'll be right back. We'll
be right back. We'll be right back. We'll be right back. We'll be right back.

SUGGESTION GENERATION

Treat transcriptions as sequences of words
Find word in current transcript that minimises Levenshtein distance
Use target word as cutting point for current transcript

Concatenate suggestion w/ previous transcript

SUGGESTION GENERATION

previous = 'Hello, this is a transcription for an audio that' (len: 9)
current = 'a transcription, for an audio that is recorded live' (len: 9)
distances(previous, current)

>>>

index:
index:

"live' -»>

'recorded live' ->

'is recorded live' -> (index:

MIN. DISTANCE ------ > 'that is recorded live' -> (index:

(distance: 48)
(
(
(
"audio that is recorded live' -> (index:
(
(
(
(

distance: 28)
distance: 19)
distance: 16)
distance: 21)
distance: 27)
distance: 30)
distance: 33)
distance: 47)

"an audio that is recorded live' -> (index:

'for an audio that is recorded live' -> (index:

"transcription, for an audio that is recorded live' -> (index:
"a transcription, for an audio that is recorded live' -> (index:

oNOoOOhWN-_LO

cutting_index = len(current.split(' ')) - argmin(distances(previous, current))
>>> 6

suggestion = ' '.join(current.split(' ')[cutting_index:])
>>> 'is recorded live'

previous + suggestion
>>> 'Hello, this is a transcription for an audio that is recorded live'

MAKE LOVE
NOT WER

OFFLINE COMPARISON

3
X
&
o
3
o]
o
—
=
=
I
o
2
S

librispeech_clean librispeech_other tedlium

1 whisper_large-v3 whisper_medium 1 whisper_small] whisper_base

[whispy_large-v3 [whispy_medium 1 whispy_small [whispy_base

OFFLINE COMPARISON

large-v3 medium

ispeech_clean

&
]
o
kel
il
@
&
i

whispy WER

o' o o
[

revi6
whispy WER

°

|-ud
o

0.2 0.4 . 0.2 0.4 . 0.2 0.4 . 0.2 0.4
whisper WER whisper WER whisper WER whisper WER

TRANSCRIPTION DELAY

Table 1: Whispy processing times

dataset
large-v3 0.88 £ 0.08 R
— medium 63 2 0.07 0.90 £ 0.09 Ave rage traversal time
small .28 0.0: 0.55 + 0.06
base 0.16 + 0.02 0.44 + 0.05
large-v3 1.28 + 0.14 1.56 + 0.16
medium 0.88 £ 0.08 1.03 + 0.09 la rge -v3 | 1.54
small 0.33 + 0.03 0.61 £ 0.07
base 0.19 + 0.02 0.49 + 0.05
large-v3 1.16 £ 0.11 1.44 £ 0.16 ,
medium |0.74 % 0.08 1.02 + 0.11 medium | 1.03
small 0.33 + 0.03 0.61 =+ 0.07
base 0.18 £ 0.02 0.46 £ 0.06
large-v3 124 £ 0.12 152 £ 0.14
medium 73 £ 0.07 1.01 + 0.09 small | 0.01
small 0.32 + 0.03 0.59 + 0.05
~ 0.18 + 0.02 0.45 + 0.04
1.39 £ 0.11 1.66 £ 0.14
0.80 + 0.06 1.06 + 0.07 base | 0.406
small 0.35 + 0.03 0.63 + 0.05
base 0.20 + 0.02 0.47 + 0.04

libri clean

libri other

tedlium

revl6

WHERE ARE WE NOW?

Whispy: Adapting STT Whisper Models to
Real-Time Environments

Antonio Bevilacqua!, Paolo Saviano!, Alessandro Amirante!?, and Simon
.]
Pietro Romano!?

! Meetecho LTD, Napoli, Italy
https:/ /www.meetecho.com/en
2 University of Napoli Federico II
https://www.unina.it

Abstract. Large general-purpose transformer models have recently be-

in the realm of speech analysis. In particular, Whisper

Fully operational system!

Hallucinations on steroids and
resource management

Currently working on extensions
(diarisation, summarisation...)

Paper under review for
ECML-PKDD

BTW
| FOUND
THE CLICKER,
IT'S FINE

THANKS FOR
LISTENING
(AND READING)!

